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Device Preparation  

Ge/Si nanowire transfer. Epitaxial Ge/Si core/shell NWs were synthesized by a two-step 

vapor-liquid-solid method.1 Ge/Si NWs are typically a few microns long with 10~20nm thick 

core and 2~4nm thin shell. One NW is shown in a highly magnified transmission electron 

micrograph (TEM) in Figure S1(c), where the Ge core and Si shell interface can be easily 

identified from the electron transmission contrast. The individual NWs are precisely placed 

onto target devices by a dry transfer method using a home-made micro-manipulator, a similar 

technique has been reported elsewhere.2–4 Briefly, the NWs are first dispersed in ethanol from 

the growth substrates by weak sonication. The amount of ethanol should be carefully selected 

such that the concentration of NWs will be not too high or too low. A 6% PVA (Polyvinyl 

alcohol) aqueous solution is then spun onto a separate Si wafer at 1000 rpm for 60s and baked 

on a hotplate at 75°C for three minutes. PMMA (PMMA: poly (methyl methacrylate) from 

Microchem, 950K A6) is then spun on the PVA surface at 1000 rpm for 60s and baked at 

75°C on a hotplate for ten minutes. A droplet of ethanol solution with the Ge/Si NWs is 

dropped on the PMMA surface. After naturally drying, the target NW is located in the dark 

field under an optical microscope (Olympus BX-51). The PMMA film is then peeled from the 

PVA surface with an adhesive tape (Nitto BTK-180E-BLK) attached on a frame carrier while 

the silicon wafer with the bilayer polymer matrix is heated up to 80°C. The frame carrier is 

then mounted onto a three-dimensional (3D) micro-manipulator and the NWs on the 

suspended PMMA film are located in the microscope. Thanks to the sub-micron XY accuracy 

of the manipulator, the selected NW can be aligned just above the pre-defined gates of the 

devices and slowly brought into contact with the target chip, which is being heated up to 

150°C to ensure the good contact between PMMA film and the chip surface. After the 

PMMA has adhered to the surface, we slowly lift the frame carrier and the NW and PMMA is 

left on the Si wafer. The PMMA is finally removed using acetone. 

 

hBN flakes transfer. Hexagonal Boron Nitride (hBN) flakes are first prepared using 

mechanical exfoliation with an adhesive tape (Nitto BTK-180E-BLK) onto a Si substrate with 

a 300nm-thick thermal oxidation layer. The thickness of hBN sheets is judged from the color 

contrast under the optical microscope. The selected hBN flakes (10~30nm in thickness) are 

then transferred with a PPC/PDMS bilayer polymer stamp (PPC: polypropylene carbonate 

and PDMS: polydimethylsiloxane) with the same home-made 3D micro-manipulator, similar 

technique has been reported elsewhere.5–7 The polymer stamps are prepared as follows: A 

piece of PDMS (1~2mm in thickness) is first deposited on a glass slide and treated in oxygen 

plasma for 1min (60W, 250mTorr). A 1μm thick film of PPC is then cast on the PDMS stamp 

and baked for 10 minutes at 80°C. In order to pick up hBN flakes from the preparation 

substrate, the PDMS stamp is brought into contact with the substrate baked at 50°C; the 

stamp with the hBN flake is then very slowly lifted up. To successfully release the hBN on 

the target chips, the stamp is heated at 90 to 110°C when in contact and peeled off very 

slowly with hBN flakes left on the substrate. 

 

Lithography. In the first electron-beam lithography (EBL), two sets of dense surface gates 

with a 100nm pitch and the intermediate patterns are defined on a highly resistive Si wafer 

surface followed with the electron beam deposition of a 5/25nm Ti/Au. The large bonding 

pads of gates (made of 5/150nm Ti/Au) with on-chip LC low pass filters are fabricated by a 

following photon-lithography and metallization. The transmission line resonator is patterned 

in the second EBL and the design ensures the pre-defined surface gates are close to each open 

end of the resonator. A 100nm-thick MoRe superconducting film is then deposited with DC 

magnetron sputtering. The width of the resonator central pin is 10m and the gaps between 

central pin and ground planes are 6m wide, yielding the characteristic impedance of 

approximately 50. In the same step a DC bias line connected through an on-chip spiral 

inductor to the middle of the signal line is made so that the high quality-factor of the 

resonator is maintained.8,9 After the hBN flakes and Ge/Si NWs are placed onto the surface 

gates, ohmic contacts are made using 1/80nm Ti/Pd with the EBL and deposition. Contacts 



S3 
 

connect the NW to the central pin and ground planes. A 3-second dip in a diluted buffer 

hydrofluoric (BHF) solution (BHF: H2O=1: 2) is used to remove the natural oxidation on the 

Si shell surface prior to the electron beam deposition for contacts.  

 

Measurement Setup  

The measurement is performed on an Oxford instruments MX100 dilution refrigerator 

equipped with semi-rigid coaxial lines with good thermal anchors to the stages (simplified 

circuit diagram illustrated in Figure S1(a)). The input microwave line is attenuated with a 

total of 53dB distributed over all stages. This attenuation prevents the heating leakage to the 

 
Figure S1. (a) A simplified schematic of the DC and microwave measurement setup. (b) Phase 

spectrum of resonance transmission as a function of fd when =0 and ≫0, corresponding to 

Figure 1(c). (c) TEM of one Ge/Si NW. The red dashed lines in (c) define the interface 

between Ge core and Si shell. 
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samples due to blackbody radiation transmitted from the higher temperature stages and room 

temperature (RT). Semi-rigid coaxial lines below the 1K stage are all superconducting NbTi 

cables. The output lines are buffered by two cryogenic isolators mounted at the mixing 

chamber and the still stage to block noise transmission from the cryogenic amplifier mounted 

at 1.5K. The signal transmitted through the cavity is first amplified by 30dB at the 1.5K stage 

using a commercial cryogenic HEMT followed with three-stage microwave amplifiers 

(~75dB in total) at RT. The sample is enclosed in a tightly shielded copper holder mounted on 

a cold finger below the mixing chamber with a base temperature of ~50mK.  

 

The DQD was characterized by direct transport and the response of the microwave resonator, 

simultaneously.  The DC current through the DQD down to picoamperes was measured using 

a biased current amplifier at RT. The resonator transmission is measured with a lock-in 

homodyne technique. We use a Nanonis Tramea systems (SPECS Zurich) providing the 

modulation and demodulation for the lock-in measurements with the internal DAC (digital-

analog convertor) and ADC (analog-digital convertor) elements. The microwave drive was 

first modulated in amplitude with a mixer by a slow sinusoidal wave from Tramea with a 

frequency fmod=1170Hz and an amplitude Vmod=0.7V (the maximal value can be applied to the 

mixer IF port before the nonlinear modulation) at RT. The modulated drive was then 

attenuated at each stage of the dilution refrigerator before reaching the input port of the 

device. With a variable attenuator at RT the input power Pin spanned a range -100~-130dBm. 

The transmitted signal out of the resonator was amplified by the HEMT and RT amplifiers 

and then demodulated by an IQ mixer to obtain the quadrature components, I and Q. The 

sinusoidal I and Q signals were further amplified by voltage amplifiers (60dB) and 

demodulated by a lock-in amplifier to extract out the amplitude, AI and AQ. The amplitude 

and the phase of the transmitted signals is determined as A=√AI
2+AQ

2  and 𝜃=arctan(
AQ

AI
), 

respectively. For the frequency domain measurements, we perform slow CW (continuous 

wave) ramps with sweeping frequency using a microwave signal generator which is triggered 

by a sharp voltage step applied from a Tramea DAC output, allowing synchronization of the 

whole system. FigureS1(b) presents the comparison of the phase spectra as a function of 

microwave drive frequency fd when the qubit is at ε≫0 (blue dots) and ε=0  (red dots), 

corresponding to the same gate conditions shown in Figure 1(c) for the transmission power 

comparison. 

 

DQD Out of Equilibrium  

Figure S2 shows the DC current and microwave response in amplitude and phase when the 

DQD is biased with Vsd=0.5, 0 and -0.5mV, respectively. The microwave drive power Pin=-

125dBm with fd=fc. Figure S2(a-c) display the current diagrams with voltage sweeping ranges 

of plunger gates similar to Figure 1(d) and the other gate voltages VSB=4.3V, VB=7.145V, 

VDB=3.5V, respectively. The colorscale represents a variation of current in a range of ±20 pA. 

The lever arms of the plunger gates can be derived from the size of the transport triangles as 

indicated in the current plots:10 

 

αL(R)=
eVsd

δVL(R)
=0.079(0.077)eV/V.                                                                                           (S1) 

 

The capacitance of each plunger gate is determined by the charge transition spacing: 

 

CL(R)=
e

∆VL(R)
=4.7(4.6)aF.                                                                                                       (S2) 

 

The total capacitance from gate, source and drain of each quantum dot is: 

 

CL(R)
Σ =

CL(R)

αL(R)
=59.5(59.7)aF.                                                                                                     (S3) 
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The mutual electrostatic coupling capacitance between the adjacent dots is determined by the 

length of the interdot line: 

 

Cm=CR
Σ ∆VL

m

∆VL
=CL

Σ ∆VR
m

∆VR
≈20aF.                                                                                                   (S4) 

The cross capacitive coupling rate is defined as: 

β
m

=
Cm

CL(R)
Σ ≈0.333.                                                                                                                     (S5)                                                   

 

The charging energy of each dot is: 

 

EL(R)=e2 CR(L)
Σ

CL
Σ

CR
Σ

-Cm
2 =2.6(2.8)meV.                                                                                             (S6) 

 

The mutual electrostatic energy is: 

 

Em=e2 Cm

CL
Σ

CR
Σ

-Cm
2 ≈0.9meV.                                                                                                        (S7)                                                                     

 

Upon applying the source-drain bias, the positions of the interdot transition lines in the charge 

diagram also shift due to the capacitive gating from the contact electrodes. Figure 2d shows 

the respective magnitude and phase evolution of one interdot line under different Vsd. The 

 
Figure S2. DC current plots as a function of VL and VR representing the charge stability 

diagram with (a) Vsd =-0.5mV, (b) Vsd =0mV and (c) Vsd =0.5mV. The charging energies of 

QDs and the lever-arms are extracted from the hexagonal patterns. (d) Magnitude and phase 

variations of one inter-dot charge transition line under different biases corresponding to (a-c). 

The circles in (d) highlight the transport triangles observed from the cavity response, showing 

a similar triangle patterns as observed in the DC transport spectroscopy. 
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shift of the position according to the plunger gate voltages (denoted as VL
'  and VR

' ) represents 

the change of the QD chemical potentials. The energy detuning between the left-right QD 

induced by Vsd is regulated by a lever-arm as: 

 

αs=
ΔμL-ΔμR

Vsd
=

αLVL
'

-αRVR
'

Vsd
=0.243eV/V                                                                                       (S8) 

 

It is worthwhile to note that we observe a significant signal reduction in both magnitude and 

phase spectroscopies close to the regions (indicated by circles in Figure S2(d)) where the 

charge transport triangles always occur under finite bias as shown in Figure S2(a) and (c). 

The same cavity response to the DC transport has also been observed on a carbon nanotube 

DQD.11 The observations can be interpreted that with a finite bias Vsd and detuning , the 

ground and excited states of qubit will be out-of-equilibrium as the charge will sequentially 

hop through the down-hill energy scape of the DQD between the electrodes. The qubit 

occupation probability 〈σz〉 is determined by the qubit energy relaxation rate and tunneling 

rates between the QDs and the electrodes. In the triangle regions, the qubit will remain in the 

excited state for certain period and 〈σz〉 is not close to -1. According to Eq. (3) in the main 

text, the resonance dispersive shift induced by the qubit will be altered, resulting in magnitude 

and phase variations. Outside the transport triangles where the DQD is isolated from the 

electrodes and the charge transport is forbidden, the signals remain similar to those in the 

spectroscopy when Vsd=0. 

 

Resonator Phase Spectrum with Different Qubit Decoherence 

 
Figure S3. Numerical calculation of full phase spectra with different  in the case of (a) on 

resonance =0 and (b) detuned ≠0 regime, corresponding to the transmission power spectra 

in Figure 3(d) and (e). 
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In Figure 3 (d) and (e) we present the calculated transmission power as a function of fd in the 

case of (a) on resonance, =0 and (b) detuned, ≠0 with different qubit decoherence rate, . 

Figure S3 shows the corresponding phase spectra. In the former case when 2geff, we 

observe that the phase experiences two cycles of variation from the maxima to the minima 

when sweeping fd, which is in accordance with the Rabi splitting observed in the power 

spectra as shown in the main text. Once  becomes larger than 2geff and the splitting peaks 

merge into one, the phase spectra only show a single  to - transition. The gradient of the 

tendency reflects the qubit decoherent rate. In the case of ≠0, the cavity mode experiences 

only a dispersive shift. We then only see a single phase-transition with slight variations in the 

trends as seen in Figure S3(b).  

 

Resonator Signal Response with Different Coupling Strength 

To verify the fits of the experimental results in Figure 2, we investigate the numerically 

calculated cavity transmission in power and phase as a function of qubit detuning  with 

different  and gc. The physical parameters for simulation are [2tc/ℏ, c, d, ] =2×[4, 6, 6, 

0.001]GHz, close to the qubit state indicated by the red arrow of Figure (2). We compared the 

 
Figure S4. Numerical calculations of (a) relative transmission power A2/A0

2  and (b) phase 

variation ∆θ  as a function of  and  with gc/2=50MHz. (c) A2/A0
2 and (d) ∆θ  with 

gc/2=10MHz. Other physical parameters for simulation are [2tc/ℏ, c, d, ] =2×[4, 6, 6, 

0.001]GHz. With gc/2=50MHz and =5GHz, the simulation well agrees with the observed 

results of Figure2, justifying the validity of the fits using Eq. (4). 
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difference of the transmitted signal with gc/2=50MHz for (a) and (b) and with gc/2=10MHz 

for (c) and (d) in Figure S4. With a small gc we can observe sharp splitting features in both (c) 

relative power transmission A2/A0
2 and (d) phase variations ∆θ plots as the qubit energy is 

swept across the photon level. In contrast, with a large gc we only observe spitting in the 

phase curve but a single dip in the transmission power plot, which is in line with the 

experimental observations in Figure 2. For both cases we observe that the signal dramatically 

reduces as the qubit decoherence  increases, according to the theory from Eq. (4). However, 

it is clearly to see that with gc/2=10MHz both A2/A0
2 and ∆θ become very small, in contrast 

to the experiment results with /2=GHz. With gc/2=50MHz, the numerical calculations 

capture the main features from the measurement. 

 

Evolution of Resonance Full Spectrum with Different Decoherence 

To further understand the impact of the qubit decoherence on the dynamics of the resonator 

transmission, we calculate the full spectrum of the resonance as a function of fd for a set of 

qubit detuning  with different decoherence rate .  The simulation parameters are [2tc/ℏ, gc, 

c, d, ]=2×[4, 0.05, 6, 6, 0.001]GHz, which are close to the qubit state and experimental 

conditions in Figure 4. In Figure S5, the left panel in each sub-plot shows the absolute 

transmission power in arbitrary units, which provides information on the dissipation. The 

right panels are the corresponding normalized transmission spectrum (the spectrum at each 

 is normalized to its maximal transmission power), which highlights the changes in 

resonance lineshape. From (a) to (f) the qubit decoherence rate increases from = to ≫gc. 

With = a clear Rabi splitting with an anti-crossing gap of 2geff is observed in both panels of 

(a). The effect as decoherence increases to be comparable to 2geff is shown in (b-d). In the 

absolute power plots the splitting features are still seen arising from the large dissipation 

when photons are close to resonance with the qubit. However, in the normalized plots the 

peaks obviously broaden and finally merge into one. When the qubit decoherence becomes 

much faster than the coherent interaction rate, the effect of the qubit on the cavity mode 

becomes much weaker. As shown in (e) and (f), the splitting features completely disappear 

with a pronounced reduction of transmission power and a few hundred KHz resonance 

frequency shift observed when  is close to zero. The similarity between the calculation in (f) 

and the experimental observations further prove the validity of the fits in Figure 2.  

 

Power Dependence of the Dispersive Shift 

 
Figure S5. Numerically calculated full spectra as a function of fd and . The evolutions of the 

resonance spectra with different  are shown from (a) to (f). In each subplot, the left panel is 

the absolute transmission power in arbitrary units while the right one is the normalized power. 
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In Figure 5(a) and (b) of the main text we have presented the numerical calculation of ⟨σz⟩ 
and  as a function of photon number n with different 1 but a fixed , where for all 1 the 

initial phase shifts are the same and the ⟨σz⟩ and  transition tendency is only related to 1. 

Figure S6 (a-c) show a complimentary calculation of ⟨σz⟩ and  as a function of n with 

different  but a fixed 1. In contrast to the former case, we observe that the initial phase shifts 

for each  are different, in good agreement with the prediction of Eq. (4). With the same 1 the 

positions for the ⟨σz⟩ and  transition relative to photon number n axis is almost the same. 

This discrepancy indicates that the power dependence of the resonance dispersive shift is a 

powerful probe to sperate 1 and γ
Φ

 as γ
Φ

=γ -γ
1

2⁄ . For large n we utilize an analytical 

simulation using the combination of Eq. (4) and (5) (here photon number n is an input 

parameter). Figure S6(d) and (e) present the analytical calculated ⟨σz⟩ and  as a function of 

n, which reveals the same relations as shown in Figure 5 of the main text. The dependence of 

 on ⟨σz⟩ for different 1 with analytical and numerical calculations is compared in Figure 

S6(f). It is clearly seen that although the ranges of  and ⟨σz⟩ are different because of 

various qubit energy relaxations, the dependence strictly follows Eq. (4) and (5). 

 

 

 

 

 

 

 

 
Figure S6. Numerically calculated (a) qubit occupation probability ⟨σz⟩ and (b) phase shift  as a 

function of n with different  and a fixed 1=2×0.02GHz. (c)  vs. ⟨σz⟩ with different  showing 

different initial phase. The other simulation parameters are the same as those in Figure 5 in the 

main text. Analytical calculations using Eq. (4) and (5) are present in (d) ⟨σz⟩ and (e)  as a 

function of photon number n with a fixed  but different 1, where γ= γ
1

2⁄ +γ
Φ

. (d) and (e) show 

the consistent results as those in Figure 5 (a) and (b). (f) Comparison of -⟨𝜎𝑧⟩ dependence using 

the numerical and analytical calculation results. They show exactly same tendency. 
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